Switch Mode Power Supplies: SPICE Simulations and Practical Designs
Christophe Basso – February 2008

Corrections of typos, mistakes and errors found by readers (or by the author himself!)

Page xvi: Sorry Monsieur Balocco, your name was misspelled with two “l”. One is enough: Dr. Didier Balocco from Saft Power Systems.

Page 4: equation (1-1) result is incorrect, it should be 140 Ω (Fig. 1-1 is ok though)

Page 22: below equation (1-32): “for a buck, \(V_{in} - V_{out} \) and not \(V_{out} - V_{in} \).
Contributed by C. Denton, March 2008.

Page 57: to gain a comprehensive understanding of the buck-boost operation… The word buck is missing.
Contributed by Kulsangcharoen Ponggorn, June 2008.

Page 69, figure 1-50: I don’t know what happened to the captions on the graph, but those on the picture are certainly not at the right place. Here is the corrected graph:

![Corrected Graph](image)

Figure 1-50

Page 75, figure 1-56: the picture is correct, however, the “zeta” captions are not: in both cases, zeta is positive and greater than 0.

Page 92, figure 1B-15: the upper curve caption should be “output step, 400 mA/µs” and not “stemp, 400 mA/ms”!
Page 92, figure 1B-15: the amplitude caption in the figure is wrong, the 2 mV does not make sense. The real capacitor contribution alone is 70 mV as corrected in the below figure.

Figure 1-B5: …step, $S_i = 400 \text{ mA/\mu s}$ (not 450 mA)

Page 167, CCM PWM switch CM listing

A capacitor has been purposely added between terminals C and P to create the sub harmonic effects at half of the switching frequency. To obtain exactly the same curve as with Ridley models, the capacitor must be connected after the voltage source VM, between nodes cx and p accounting for the presence of this capacitor in the measured current. It was previously connected between c and p, leading to a slight high-frequency deviation. The correction has been included before print, the book listing is thus good.

Page 236: Eq. (2B-6) should be: $T(t) = 1 - 2e^{-t} + e^{-2t}$

Page 268: Fig. 3-22, page 268: in the picture, R_{load} should be 2.5 Ω and not 2.5 W.

Contributed by C. Denton, March 2008

Page 269: Fig. 3-23a, page 268: in the picture, f_c should be 5 kHz and not 5 Hz.

Contributed by C. Denton, March 2008

Page 276: Fig. 3-28, page 276: in the schematic parameters list, f_{p2} should be 50k and not 50.
Contributed by C. Denton, March 2008.

Page 288: The table describing the TL431 and TLV431 features an obvious typo. The breakdown voltage of the TLV431 is not 1 V but 18 V!

<table>
<thead>
<tr>
<th>Reference</th>
<th>Vref</th>
<th>Ibias,min</th>
<th>Precision</th>
<th>Max voltage</th>
<th>Max current</th>
</tr>
</thead>
<tbody>
<tr>
<td>TL431I</td>
<td>2.495 V</td>
<td>1 mA</td>
<td>± 2% @ 25 °C</td>
<td>36 V</td>
<td>100 mA</td>
</tr>
<tr>
<td>TL431A</td>
<td>2.495 V</td>
<td>1 mA</td>
<td>± 1% @ 25 °C</td>
<td>36 V</td>
<td>100 mA</td>
</tr>
<tr>
<td>TL431B</td>
<td>2.495 V</td>
<td>1 mA</td>
<td>± 0.4% @ 25 °C</td>
<td>36 V</td>
<td>100 mA</td>
</tr>
<tr>
<td>TLV431A</td>
<td>1.24 V</td>
<td>100 µA</td>
<td>± 1% @ 25 °C</td>
<td>18 V</td>
<td>20 mA</td>
</tr>
<tr>
<td>TLV431B</td>
<td>1.24 V</td>
<td>100 µA</td>
<td>± 0.5% @ 25 °C</td>
<td>18 V</td>
<td>20 mA</td>
</tr>
</tbody>
</table>

Contributed by Chalermkiat, June 2008.

Page 293: Fig. 3-39, page 293: in the schematic parameters list, it should be fc = 1k and not just “1” and below should be pm = 100 and not kpm = 100.

Contributed by C. Denton, March 2008.

Page 322: Reference 3. “Note from the author: it’s too old, can’t find place…”. Obviously, this sentence was left over during the editing process!

Page 411: “Numerical application gives a cutoff frequency of 54 kHz” and not 45 kHz. Contributed by Kulsangcharoen Ponggorn, July 2008.

Page 418, equation 5-17:

This equation defines the diode conduction losses by:

\[
P_{\text{cond,diode}} = V_f I_{d,\text{avg}} + R_d I_{d,\text{rms}}^2
\]

(5-17)

In the above expression, \(V_f\) should be replaced by \(V_{T0}\) where \(V_{T0}\) represents the threshold voltage of the junction. If you look at figure 1 (see the appendix at the end), the diode model appears on the right side. It combines a constant voltage source, \(V_{T0}\), in series with a dynamic resistor \(R_d\). The total voltage drop \(V_f\) measured at a given current \(I_{d0}\), combines \(V_{T0}\) and the dynamic resistor drop. If you use \(V_f\) as in Eq. (5-17), the term \(R_d\) is counted twice. Therefore, the total average power dissipated by the diode is correctly expressed by:

\[
P_{\text{cond}} = V_{T0} I_{d,\text{avg}} + R_d I_{d,\text{rms}}^2 \approx V_f I_{d,\text{avg}}
\]

\(V_{T0}\) depends on the diode technology. It is measured when the diode starts conducting (a few hundred of µA). The drop is roughly 0.4 V for Schottky and 0.6 V for a silicon diode.

The correction is as follows:

… The conduction losses for a diode are given by

\[
P_{\text{cond}} = V_{T0} I_{d,\text{avg}} + R_d I_{d,\text{rms}}^2 \approx V_f I_{d,\text{avg}}
\]

(5-17)

where \(I_{d,\text{avg}}\) = average current in the diode

\(V_f\) = forward voltage at the considered diode current
$V_{T0} = \text{forward voltage at which the diode starts to conduct (} \approx 0.4 \, \text{V for a Schottky, } \approx 0.6 \, \text{V for a silicon diode)}$

$R_d =$ …

Page 469: figure 5-14a:

The caption should say …The CCM buck-boost converter…

Page 562: equation 6-166

It should be R_1 not R_3:

$$R_1 = \frac{275\times\sqrt{2} - 3}{250u} = 1.6 \, M\Omega$$

Page 633: voltage-mode control table

The dc gain, V_{out}/V_{error}, should be:

$$\frac{NV_{in}}{(1-D) V_{peak}} \text{ The } N \text{ is missing}$$

Page 652: …below 15 V, then there is no arm to let the driver… there is no harm!

Contributed by C. Denton, April 2008.

Page 679, equation 7-166:

$$P_d = V_{T0} I_{d,avg} + R_d I_{d,rms}^2 + D I_R PIV \approx V_f I_{d,avg} \quad (7-166)$$

Page 693, equation 7-204:

$$P_d = V_{T0} I_{d,avg} + R_d I_{d,rms}^2 + D I_R PIV \approx V_f I_{d,avg} \quad (7-204)$$

Page 825, table 8-2:

In the “where” section, the definition for S_n has to be changed:

$$S_n = \frac{NV_{in} - V_{out}}{L} NR_{sense} \text{ this is the on-time secondary slope reflected to the primary.}$$

The equation given in the page, $S_n = \frac{V_{in}}{L_p} R_{sense}$, corresponds to the magnetizing current slope.

It can, by the way, be considered as a free external ramp.

Page 834: small typo on the current I_{valley} (or I_{peak}) should be $I_{p, valley}$ or $I_{p, peak}$:

$$P_{SW, sm} = \frac{I_{p, valley} V_{bulk} \Delta t}{6} F_{sw} \quad \text{eq. 8-125a}$$
\[P_{SW, on} = \frac{I_{p, valley} V_{bulk, max} \Delta t}{6} F_{sw} = \frac{1.56 \times 400 \times 45n}{6} \times 100k \approx 470 \text{ mW} \quad \text{eq. 8-125c} \]

\[P_{SW, off} = \frac{I_{p, peak} V_{bulk} \Delta t}{2} F_{sw} \quad \text{eq. 8-125d} \]

\[P_{SW, off} = \frac{I_{p, peak} V_{bulk, max} \Delta t}{2} F_{sw} = \frac{1.84 \times 400 \times 45n}{2} \times 100k = 1.65 W \quad \text{eq. 8-125e} \]

Page 856: equation 8B-12

The equation should be: \(C_{eq} = C_{L2} \left(\frac{N_3}{N_2} \right)^2 \parallel C_{L1} \), the \(C_{L2} \) sub term is missing.

For equations 8B-13c and 8B-13d, \(F_{sw} \) should be replaced by \(f \), where \(f \) is a sinusoidal signal of course.

Page 860: equation 8C-2

In the numerical application, the \(10^4 \) is gone, but the result is correct:

\[W_{A_c} = \frac{P_{out}}{K_c K_i B_{max} F_{sw} J} 10^4 = \frac{250 \times 10000}{507 \times 0.0005 \times 0.11 \times 100000 \times 400} = 2.24 \text{ cm}^4 \quad \text{eq. 8C-2} \]

Appendix 5X – conduction diode loss calculations

Figure 1: the equivalent diode representation.

In most of the examples, the conduction losses are simply calculated by $P_{\text{cond}} = V_f I_{\text{d,avg}}$ which is ok since the total drop given by the data-sheets at a certain average current combines the contribution of the dc source V_{T0} and the ohmic drop. However, what is the error if we do not account for the ac ripple? Suppose we have a diode crossed by a full-wave signal like below:

Figure 2: an example of a rectified current flowing in a diode.

The rms current is expressed by: $I_{d,rms} = \frac{I_{d,peak}}{\sqrt{2}}$

The average current is: $I_{d,avg} = \frac{2I_{d,peak}}{\pi}$

In Eq. (5-17), we would assume the following losses:
Replacing by the rms and average definitions, we obtain:

\[P_{d,\text{avg}} = \frac{2V_{T0} I_{d,\text{peak}}}{\pi} + \frac{1}{2} R_d I_{d,\text{peak}}^2 \]
\[(5-17b) \]

If we now neglect the rms current effect on the dynamic resistor, we have:

\[P_{d,\text{avg}} = V_i I_{d,\text{avg}} = \left(V_{T0} + R_d I_{d,\text{avg}} \right) I_{d,\text{avg}} \]
\[(5-17c) \]

Again, replacing by the definition, we have:

\[P_{d,\text{avg}} = \left(V_{T0} + R_d \frac{2I_{d,\text{peak}}}{\pi} \right) \frac{2I_{d,\text{peak}}}{\pi} = \frac{2V_{T0} I_{d,\text{peak}}}{\pi} + \frac{4}{\pi^2} R_d I_{d,\text{peak}}^2 \]
\[(5-17d) \]

If we compare equations 5-17b and 5-17d, the resistive factor is respectively weighted by 0.5 and \(\frac{4}{\pi^2} \), 0.405.

Suppose the peak current of figure 2 is 23 A, leading to:

\[I_{d,\text{rms}} = \frac{I_{d,\text{peak}}}{\sqrt{2}} = \frac{23}{1.414} = 16.3 \, A \]
\[(5-17e) \]

\[I_{d,\text{avg}} = \frac{2I_{d,\text{peak}}}{\pi} = \frac{46}{3.14} = 14.6 \, A \]
\[(5-17f) \]

We have selected a power diode whose characteristic appears on figure 3:
From the curve, we have extracted V_{T0} (1.15 V), the dynamic resistor (the slope of the blue curve, 25 mΩ) and the total forward drop at a 15 A current (1.45 V). Let’s apply our previous formulas with these numbers:

$$P_{\text{cond}} = V_{T0}I_{d,avg} + R_d I_{d,rms}^2 = 1.15 \times 14.6 + 25m \times 16.3^2 = 23.4 W \quad (5-17g)$$

$$P_{\text{cond}} = V_f I_{d,avg} = 1.45 \times 14.6 = 21.2 W \quad (5-17h)$$

The second formula differs from the first by 9.4%.

Some manufacturers also give power curves in relationship to the peak to average current coefficient K_f (figure 4). When this factor equals 1, this a dc current (no ac ripple). Otherwise, with a signal as in figure 2, we would have:

$$K_f = \frac{I_{d,\text{peak}}}{I_{d,\text{avg}}} = \frac{\pi I_{d,\text{peak}}}{2I_{d,\text{rms}}} = \frac{\pi}{2} = 1.6 \quad (5-17i)$$

For single wave rectification, this factor equals π.

For a square wave signal with a duty cycle D, the peak to average current factor is:

$$K_f = \frac{I_{d,\text{peak}}}{I_{d,\text{avg}}} = \frac{I_{d,\text{peak}}}{DI_{d,\text{peak}}} = \frac{1}{D} \quad (5-17j)$$

Figure 4 square-wave curve seems to imply a duty-cycle of 50% ($K_f = 2$).
Figure 4: some manufacturers give power dissipation curves depending on the ac ripple amplitude.